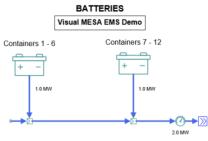
Visual MESA[®] Multi-Period Optimizer with all Renewables Visual MESA Hybrid Power Plant Digital Twin

Example

How the Hybrid Power Plant should be operated during the day, in order to maximize overall profits?

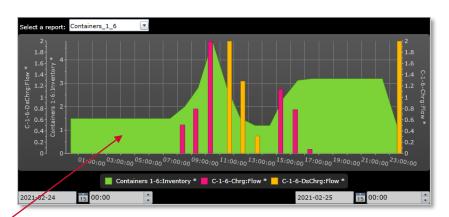
- Supplying the promised power to the grid
- Satisfying the Green Hydrogen demand

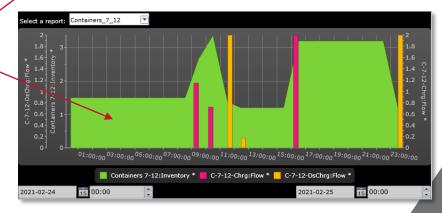

A Multi-Period Optimization was performed with the Visual MESA Multi-Period Optimizer application

- Based on forecasts for weather (wind, solar radiation, ambient temperature) and power grid prices during the upcoming day
- In order to define the:
 - Optimal batteries power inventory (i.e. when to charge and discharge)
 - Optimal Green Hydrogen management that includes:
 - Electrolyzer (PEM) operation (i.e. when to produce Green Hydrogen with power and demineralized water)
 - Storage management for both, Green Hydrogen and Oxygen (by-product), including compression power

• Fuel Cell operation (i.e. when to produce electricity by using the stored Hydrogen and Proprietary Information Oxygen)

Visual MESA[®] Multi-Period Optimizer with all Renewables Visual MESA Hybrid Power Plant Digital Twin Example-Optimal Batteries Schedule

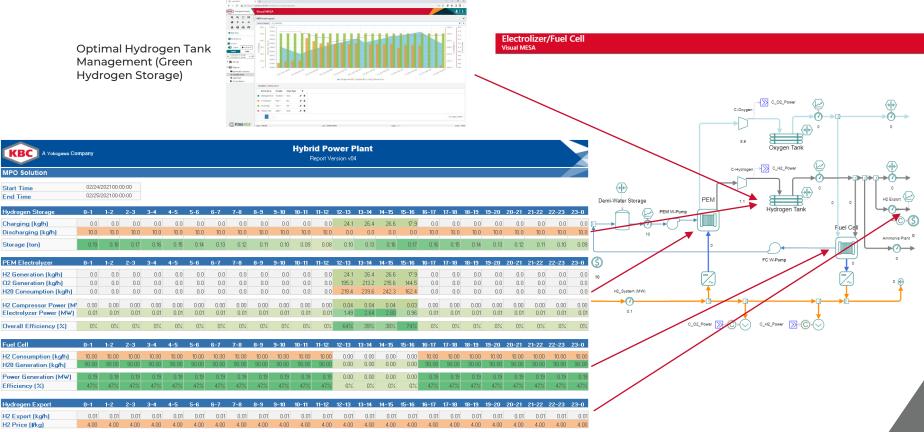




												_			_								_	
					VM	-MPO	Solu	tion -	Optin	ial ba	itterie	s cha	rge so	chedu	le									
Start Time	02/24/2021 00:00:00																							
End Time	02/25/	2021 00	00:00																					
	Hours																							
Batteries Containers 1-6	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-0
Charging (MW)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.51	0.00	2.00	0.00	0.00	0.00	0.00	1.14	0.78	0.08	0.00	0.00	0.00	0.00	0.00	0.0
Discharging (MW)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.50	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.0
Containers 1-6 charge (MWh)	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	2.01	2.01	4.01	2.01	1.51	1.20	1.20	2.34	3.12	3.20	3.20	3.20	3.20	3.20	3.20	1.2
												Ho	irs											
Batteries Containers 7-12	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-0
Charging (MW)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.94	0.72	0.00	0.00	0.00	0.00	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Discharging (MW)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.0
Conrtainers 7-12 charge (MWh)	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	3.44	4.17	2.17	1.20	1.20	1.20	1.20	3.20	3.20	3.20	3.20	3.20	3.20	3.20	1.2
Total Batteries Charge (MWh)	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.51	5.45	8.17	4.17	2.71	2.40	2.40	3.54	6.32	6.40	6.40	6.40	6.40	6.40	6.40	2.4

Example

How batteries and Hydrogen Storage can be properly managed in order to maintain a certain maximum amount of power exported to the grid and maximize profits?



Visual MESA[®] Multi-Period Optimizer with all Renewables Visual MESA Hybrid Power Plant Digital Twin

Example – Optimal Electrolyzer (Green Hydrogen Production), Storage and Fuel Cell Schedules

Proprietary Information